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Abstract. Capacitances of molecules, fullerenes and carbon nanotubes under the condition of no electron-
tunneling are calculated by the partitioned real-space density functional method that has been recently
developed. We found that a quantum capacitance of a spherical jellium bielectrode decreases and ap-
proaches the classical value as the electron density increases. The capacitances of fullerenes and carbon
nanotubes do not depend on the detailed atomic geometry but on the overall shapes. The values of the ca-
pacitances of these nanostructures are found to be a few 10−20 F and are compatible with the experimental
ones determined by the scanning tunneling microscopy studies.

PACS. 31.15.Ar Ab initio calculations – 31.15.-p Calculations and mathematical techniques in atomic and
molecular physics (excluding electron correlation calculations) – 73.22.-f Electronic structure of nanoscale
materials: clusters, nanoparticles, nanotubes, and nanocrystals

1 Introduction

Capacitance plays a very important role in many
nanoscale physical phenomena such as Coulomb block-
ade (CB) and nanosized device applications. In particu-
lar, CB phenomena which occur in nanosized junctions at
low temperatures is essentially characterized by the ca-
pacitance of the junction [1]. In the scanning capacitance
microscopy (SCM) experiment, capacitance between the
SCM tip and the sample surface is measured to investigate
the electronic properties of semiconductor surfaces [2].

Recently, capacitances of a gold cluster with 5 nm
size [3] and a cyclopentene molecule [4] have been ob-
tained from the current-voltage characteristics in the scan-
ning tunneling microscopy (STM) studies. The capaci-
tance of the gold cluster shows a nonclassical behavior
caused by electron tunneling between the tip and the
cluster when the separation is small enough. The STM
study gives 1.3 × 10−20 F for the capacitance of a cy-
clopentene molecule [4]. These experimental results on
the capacitances of extremely small values indicate that
the evaluation of the capacitances of nanostructures by a
conventional classical approach is no longer valid.
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Theoretically, quantum approaches to the calculation
of capacitance have been formulated, and the quantum
corrections caused by the electron tunneling and/or the
finite density of states have been discussed [5,6]. A re-
cent ab initio study shows a crossover from a classical to
quantum behaviors in the capacitance of atomic junctions
of several number of Al atoms as the electrode separa-
tion decreases [7]. These theories consist of several steps
of computations: (i) determine the effective potential for
electrons. (ii) Solve the single electron scattering problem
in the potential. (iii) Calculate the nonequilibrium charge
distribution by the chemical potential shift to obtain the
electrochemical capacitance.

Although these methods are very accurate and ade-
quate for the evaluation of capacitances in fully quan-
tum regime where electron tunneling is not negligible,
the computational cost will dramatically increase as the
system size and/or the electrode separation increase. In
particular, the evaluation of the capacitance of nanostruc-
tures which are separated by nanometers and the self-
capacitances of carbon nanotubes (CNT’s), for example,
are very difficult by the theoretical approaches above.

Therefore, the objectives in this study are to accu-
rately calculate the capacitances of molecules, fullerenes,
CNT’s and the self-capacitances by a simple ab initio
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approach, partitioned real-space density functional
(PRDF) method [8] and to compare those with experimen-
tal ones. The PRDF method, which has been also success-
fully applied to the study of field evaporation from carbon
nanotubes [9], is briefly described in the next section.

2 Method and model

The PRDF method based on ab initio higher-order finite-
difference pseudopotential method [10,11] within the den-
sity functional theory (DFT) [12,13] has been recently
developed for determining the electronic structures of bi-
electrodes without electric current under bias voltage or in
an electric field. Investigation of such systems by a stan-
dard DFT has been impossible, because electrons neces-
sarily transfer from one electrode with higher potential
toward the other electrode with lower potential under
bias voltage or electric field owing to the nature of the
DFT, that is, the DFT seeks the global ground state. In
another words, the standard DFT determines the equi-
librium ground state with one Fermi energy. The main
procedure of the PRDF calculations is to divide the en-
tire system into subsystems and to calculate the electronic
wave function and electron density in each subsystem us-
ing self-consistently potential defined in the entire system.
Given an excess charge Q and −Q to the left and right
electrodes shown in Figures 1a and 1b induced charge-
density-distribution and in Figure 1c effective potential
and Fermi energies, ER

F and EL
F are self-consistently de-

termined. As a result, the capacitance C is easily obtained
by the simple formulae

V = (ER
F − EL

F )/e, C = dQ/dV, (1)

where, e is an electron charge. Since the voltage V is a
function of Q, the nonlinearity is automatically included
in the capacitance C. It should be noted that the electrode
separation should be large enough and the bias voltage
should be small enough for the condition of no electron-
tunneling, because the PRDF method preserves the num-
ber of electrons in each subsystem. Therefore, the evalu-
ation of capacitances in this study is valid only when the
effect of electron tunneling is negligible.

We have chosen to study the capacitance of spher-
ical jelliums of various electron densities to compare
with those of classical counterparts. The capacitances
of Si5, fullerenes (C20 and C60) and CNT’s ((5, 0) zigzag
and (3, 3) armchair nanotubes) are investigated as exam-
ples of molecules and clusters. Finally, the capacitance of
a cyclopentene molecule (C5H8) is calculated to compare
with that obtained in a recent experiment.

The technical details of numerical calculations are as
follows. For exchange-correlation potential, we used the
local density approximation [14,15] for spherical jelliums
and the generalized gradient approximation by Perdew
et al. [16] for the other structures. We employed the
norm-conserving pseudopotentials of NCPS97 [17] based
on the Troullier and Martins formalism [18]. We solved the
Poisson’s equation to obtain the Hartree potential in the
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Fig. 1. Electronic states obtained by the PRDF method.
(a) Schematic configuration of charged bielectrodes (spherical
jelliums) under bias voltage in the partitioned space. (b) The
induced charge-density-distribution ∆N and (c) the effective
potential Veff of spherical jelliums along the line which links
the center of two spheres and two Fermi energies EL

F and ER
F

self-consistently calculated. The bias voltage V is determined
by eV = ER

F − EL
F . The electron density of the jelliums is

defined by the Wigner-Seitz radius (in units of Bohr radius),
rs = 3.86.

Kohn-Sham (KS) Hamiltonian [13]. The values of Hartree
potential at outer boundaries were calculated from mul-
tipole expansion up to the l = 7th Legendre functions.
Both solutions of Poisson’s equation and Kohn-Sham
equation were obtained by the conjugate gradient (CG)
method [19]. The grid spacing is 0.16 Å. We have checked
that the grid spacing of 0.16 Å is fine enough for conver-
gence of energies of a hydrogen, carbon and silicon atoms
within 0.02 eV.

3 Results and discussion

The calculated results on the capacitance of spherical jel-
lium with radius a = 5.17 Å as a function of 1/R (R is
the distance between the center of the two spheres) are
shown in Figure 2. Closed and open circles are the results
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Fig. 2. Capacitances of the spherical jelliums as a function
of 1/R (Fig. 1a). Here, R is the separation of the two sphere
centers. Closed and open circles are the results obtained by
the PRDF method for rs = 3.86, 2.84, respectively. Solid line
is the classical result. The dash-dotted and broken lines to fit
the closed and open circles are drawn by equation (2) with the
effective radius, a = 5.82 Å and 5.49 Å, respectively.

for electron densities of rs = 3.86 and 2.84, respectively.
The electron density of the jellium is defined by the
Wigner-Seitz radius in units of Bohr radius, rs. The ca-
pacitance of classical spherical bielectrode is given by the
formula,

C = 2πε0a(1 + m + m2 + m3 + 2m4 + 3m5 + · · · ), (2)

where ε0 is the permittivity of the vacuum and m ≡
a/R [20]. The classical values are given by a solid line
in Figure 2. In this study, we have expanded C up to the
fifth-order of m in equation (2).

First, we note that the quantum capacitance of the
bielectrode decreases and approaches the classical value
(solid line) as the electron density increases. The rea-
son for this property is that the effective surface position
of the spheres determined by the electron density pro-
file around the positive background charge edge shifts in-
ward the sphere center as the electron density increases
(rs decreases), resulting in the increase in the effective
separation of bielectrode. The electron-density dependent
effective surface position has already been theoretically
investigated by several authors [21,22] only when the sur-
faces are perfectly flat. Although the present surface of
spheres is not flat but curved one, the tendency of the
surface position on electron density is consistent with the
result of Gies and Gerhardts [22].

Second, we can fit the data of closed (rs = 3.86)
and open circles (rs = 2.84) to the dash-dotted and bro-
ken lines by choosing the radii a = 5.82 Å and 5.49 Å
in the classical formula (2), respectively. These effective
radii are larger than the radius of positive background
sphere of 5.17 Å due to the leakage of electron cloud to
the vacuum side. This result means that the effective ra-
dius of spherical jellium decreases as the electron density
increases. This feature is consistent with a result for negli-
gible electron-tunneling regime in a previous study [6]. It

10 15 2520

3

2

4

R (A)

C
ap

ac
ita

nc
e 

( 
  1

0 
  F

)
-2

0

Fig. 3. Capacitances of CNT’s as a function of the separation,
R between the CNT axes. Closed and open circles are the re-
sults of (5, 0) zigzag CNT with the length of 7.2 Å and the
diameter of 3.9 Å, and (3, 3) armchair CNT with the length
of 7.3 Å and the diameter of 4.1 Å, respectively.

is difficult to evaluate the effective surface position (effec-
tive radius) of the spherical jellium directly from the self-
consistent charge distribution because the induced charge
profile is not smooth enough due to the finite size effect of
the nanosized structures as clearly seen in Figure 1b for
determining the accurate surface position.

Third, we obtain the value of self-capacitance of the
spherical jellium from Figure 2 by multiplying the capaci-
tance of bielectrode of R = ∞ by 2. It gives 6.47×10−20 F,
6.11×10−20 F and 5.76 ×10−20 F for the jelliums of
rs = 3.86, 2.84 and for the classical electrode, respec-
tively. The classical value of self-capacitance of a spher-
ical electrode is given by 4πε0a. Thus, we conclude that
the self-capacitance of spherical jellium depends on the
electron density through the effective radius a.

Now, we discuss the capacitance of CNT’s as a typ-
ical example of nanostructures. The capacitances of an
open-ended (5, 0) zigzag (closed circles) and a (3, 3) arm-
chair (open circles) CNT’s as a function of the distance,
R between the two same type CNT’s are given in Fig-
ure 3. We use the nanotube indices (n, m) following the
abbreviations adopted in a previous study [23]. The sizes
of the two CNT’s are very close, i.e., the diameter of
the (5, 0) ((3, 3)) nanotube is 3.9 Å (4.1 Å) and the length
of the (5, 0) ((3, 3)) nanotube is 7.2 Å (7.3 Å). As seen in
the small difference in the capacitances between the two
CNT’s, the atomic geometry of CNT’s does not influence
the capacitance. The result, however, does not necessarily
mean that the effect of the electronic structures of CNT’s
on the capacitances is negligible. Further detailed analysis
is needed to clarify this in a future study.

We have calculated capacitances of CNT’s with the
same type as above with different length, and found that
the capacitance is a linear function of the length. This
linear property of capacitance enables the evaluation of
self-capacitances of long CNT’s. The calculated value of
the self-capacitance of (5, 0) nanotube of 3 µm length is
1.7 × 10−17 F, which is close to the value of 3 × 10−17 F
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Fig. 4. Capacitances of nanostructures investigated in this
study. Open, shaded and closed circles are silicon, carbon and
hydrogen atoms, respectively. R is the separation of the two
centers of gravity of the bielectrode.

assumed in the scanning tunneling microscopy study on
CB phenomena of CNT’s [24].

We have also evaluated the capacitances of CNT’s ter-
minated with hydrogen. The effect of hydrogen, however,
is found to be quite small. This is probably because the
electron transfers from hydrogen to carbon atoms and thus
the effective length of the tube remains unchanged.

Finally, we have evaluated capacitances of several type
nanojunctions by the PRDF method and listed those in
Figure 4. The properties obtained are summarized as fol-
lows. (i) The values of the capacitances are a few 10−20 F.
(ii) Adsorbed hydrogen does not affect the capacitance.
(iii) The capacitance of fullerene is not proportional to
the number of carbon atoms in the cluster. (iv) The ca-
pacitance of CNT is almost independent of the detailed
atomic geometry. (v) The capacitance of nanojunction,
Si5−C5H8 is compatible with the one (1.3× 10−20 F) ob-
served by the scanning tunneling microscopy study [4].
More precise interpretations for these properties will be
given by the detailed analysis of the electronic structures
of the nanojunctions elsewhere.

4 Conclusion

We have evaluated the capacitance of spherical jelliums,
molecules, fullerenes and CNT’s in zero electron-tunneling
regime by the PRDF method. We found that the quantum
capacitance of spherical jelliums decreases and approaches

the classical value as the electron density increases. The
capacitances of fullerenes and CNT’s do not depend on
the atomic geometries but on the overall shapes. The self-
capacitance of nanostructures can be evaluated by the
PRDF method without difficulties. The calculated capac-
itances of molecules and CNT’s are compatible with ob-
served ones by the scanning tunneling microscopy studies.
Finally, we emphasize that the PRDF method is an ideal
tool for evaluating capacitances of nanostructures under
the condition of no electron-tunneling.
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